If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+80x+1=0
a = -16; b = 80; c = +1;
Δ = b2-4ac
Δ = 802-4·(-16)·1
Δ = 6464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6464}=\sqrt{64*101}=\sqrt{64}*\sqrt{101}=8\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-8\sqrt{101}}{2*-16}=\frac{-80-8\sqrt{101}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+8\sqrt{101}}{2*-16}=\frac{-80+8\sqrt{101}}{-32} $
| 9×n=9÷n/5 | | 1/3z+3=12 | | a-5+2=-2 | | 9×n/5=9÷n/5 | | -152=-19n | | 7x-9+x^2=9+2x(x-2) | | 30-4p=74 | | 3+x/16=2 | | 5c+10/6-7=5c-47 | | -3=-1/2(-2/5-4/7z)+3 | | 0.3x−30=60 | | 4(b+17)+8=4 | | 12g+29=140 | | 99+-9k=9k-27 | | b/6+8=5 | | 3y/10-3=y/5+5 | | 8x-2x-18=x+47 | | x^=1,728 | | -2+x-5=-x+3x+4 | | .79x+2.9=1.19x | | 1/4(4x-16)+4x-3=1/2(4x+8)-2 | | p/5+10=20 | | 1/5y+7=2 | | 17.2x-16=5x | | 3(x-3)+3=3x-11 | | 83=32+6(x-2) | | 2(n-3)=16n | | 11=m/14+10 | | -8=n/14-9 | | (9x-6)+(3x+18)=180 | | 3x/2=1/10 | | -7=m/4-6 |